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Abstract

Image-based chemical-genetic profiling [1] is a powerful approach enabling the massive
amounts of image data generated from high-throughput experiments to be used in func-
tional genomics, systems biology, and drug discovery [2]. Thousands of measurements
extracted from images of cell populations can be analyzed to predict previously unrec-
ognized cell states induced by experimental perturbations. However, how to map these
high-dimensional measurements to optimally useful perturbation profiles is not under-
stood. Current approaches using population averaging [3] either fail to consider non-linear
relationships between measurements [4] or to preserve single-cell information.

In this thesis, we investigate a promising alternative: By describing a cell population as
a combination of subpopulations [5], therefore explicitly modeling heterogeneity, we show
that we can extract interpretable profiles with lower dimensionality for chemical and ge-
netic perturbations compared to current methods. However a fundamental question is
whether subpopulation profiles are in general better than profiles averaging cell measure-
ments across populations. In order to help us devise a test, we developed CellProfiler
Analyst 2.0 [6][7], an interactive data exploration, analysis, and classification software for
large biological image sets. Using CellProfiler Analyst, we were able to generate SUBPOP,
a benchmark dataset of 2526 hand-labeled cells with 23 phenotypes extracted from the
well-studied BBBC021 dataset of the Broad Bioimage Benchmark Collection [8]. We intro-
duce a supervised deep neural network that is able to efficiently model subpopulations
by learning visual features directly from images. Using a 32 layer deep residual neural
network (ResNet-32) [9] on raw pixels, we were able to outperform handcrafted features
and achieve 72% accuracy on a 5-fold cross validation on SUBPOP. Finally, we show that
by using subpopulation profiles and careful noise reduction, we were able to correctly
classify 83% of the biological mechanism-of-action for each treatment in BBBC021 using
only the DNA channel and, hence, outperforming the best-performing classical method
for profiling.
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1. Introduction

The science of seeing the very small is increasingly an endeavour to extract knowledge
from the very large. In recent years, biology has undergone a dramatic shift from a qualita-
tive to a quantitative big-data-driven science. Technological advances and high-throughput
experiments have led to an unprecedented accumulation of relevant biological raw data
and hence a fundamental change in experimental strategy. While traditional, targeted
screening experiments aim to quantify specific feature such as a single chemical process or
cell function [10], it has now become possible to measure hundreds or even thousands of
distinct properties from a biological sample after a chemical or genetic perturbation (i.e.
chemical compound, genetic knockout) - a powerful method known as profiling [2]. The
goal of profiling is to map all these raw biological measurements to optimally useful pro-
files, holding as much information about the given perturbation as possible. The resulting
profiles can help to gain insights into the perturbation or derive clusters and specific pat-
terns when compared to other profiles. Due to its low costs and robust results, profiling
has numerous applications in biology: It has been used to map genetic interactions [11],
identify small molecules with novel mechanism of action [12], classify the mechanism of
action of chemical compounds [13], and create a performance-diverse compound library
[14]. There is little doubt that profiling has the potential to transform many fields in biol-
ogy-

Microscopy plays a key role to profiling, because it enables the inexpensive generation
of large image datasets with single-cell resolution. Profiling aims to redefine microscopy
images from a qualitative, subjective resource to a quantitative data source, where a signa-
ture of each sample is extracted based on single-cell measurements. In theory, these images
are able to capture fine-grained visual changes caused by a given perturbation on every
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Figure 1.1.: Image-based profiling - Using measurements from microscopy images and the
use of machine learning/data mining techniques, image-based profiling aims
to find patterns caused by biological perturbations (chemical or genetic).
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cell of the imaged population. In practice however, profiling faces many computational
challenges due to the complexity and size of the data.

Hence, image-based profiling, also known as morphological or cytological profiling, is
fundamentally an image analysis task. Figure 1.1 shows a schematic workflow for image-
based profiling. First we treat cell populations with chemical-genetic perturbations and
capture the morphology of the population using imaging. Further, we extract the best rep-
resentation that captures the morphological impact of a known perturbation given only the
raw image data. Creating these representations or profiles is an open research question.
At present, there is no standard approach nor are there software packages that implement
the variety of methods that have been proposed. A promising idea towards optimized
profiles is to preserve single cell data and thus take into account the increasingly well-
appreciated heterogeneity of cultured cell populations [5]. Almost all profiling methods
rely on hand-crafted features (such as cell shape, intensity or texture) from automated im-
age segmentation and object measurement software such as the open-source tool CellPro-
filer [15] [16] in order to model heterogeneity. However, in the only comparison between
current profiling techniques [3] based on hand-crafted features, methods that attempt to
leverage population heterogeneity were surprisingly outperformed by relatively simple
population aggregation methods where a population’s measurements have been averaged
in order to compare populations against each other. This study allows two possible con-
clusions: either, for image-based profiling, there is no value in describing a cell population
as a combination of subpopulations (that is, explicitly modeling heterogeneity) or existing
methods for creating population profiles just do not capture heterogeneity well.

In this work, we focus on the latter hypothesis and investigate a promising alternative:
Deep learning is improving various computer vision tasks by increasing the accuracy and
efficiency of automated image analysis [17]. There are several recent studies confirming
the potential of deep neural networks to microscopy imaging problems [18]. We look into
deep learning techniques, especially deep residual neural networks [9] [19], which are
able to learn fine-grained representations from image data and use it to train an efficient
phenotype classifier, thus directly modeling cellular heterogeneity.

1.1. Scientific Contribution

Our main contribution is the implementation and analysis of a scalable and expert-guided
neural approach to efficiently model heterogeneity in cultured cell populations for image-
based profiling. Using a very deep ResNet-32 architecture trained on SUBPOP, a small and
unbalanced data set, which we extracted from BBBCO021 [8], we show that it outperforms
traditional phenotype classification algorithms using hand-tuned visual features by a large
margin. Moreover, subpopulations can be used as a compressed and more interpretable
perturbation profile. Our results suggests that it is comparable to and (for our problem
instance) even outperforms the best-performing classical method of profiling for detecting
biological mechanism-of-actions (MOA) on BBBC021.

Our second contribution is the design and development of CellProfiler Analyst 2.0, an
interactive data exploration, analysis, and classification software for large biological im-
age sets, which we published in [7]. CellProfiler Analyst [6] was originally designed as
a visualization tool for biologists. CellProfiler Analyst 2.0 introduces iterative machine
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learning which leverages researchers” knowledge to quickly analyze and curate training
sets for machine learning. Included is a supervised machine learning system, integrating
scikit-learn [20], which can be trained to recognize complicated and subtle phenotypes, for
automatic scoring of millions of cells. Furthermore, CPA 2.0 provides additional tools for
exploring and analyzing multidimensional data, particularly data from high-throughput,
image-based experiments analyzed by its companion image analysis software, CellProfiler.
The implementation of CellProfiler Analyst is open source and available for download at
https://github.com/CellProfiler/CellProfiler—-Analyst.

Our third contribution is the curation of our benchmark dataset SUBPOP, which consists
of 2526 hand-labeled single cells with 23 distinct phenotypes. We were able to quickly
label, train and evaluate baseline classifiers from scikit-learn using CellProfiler Analyst
2.0. The SUBPOP dataset is publicly available at https://github.com/daviddao/
SUBPOP.

1.2. Structure of the thesis

The rest of this chapter is organized as follows: Initially, we discuss some preliminaries
(Chapter 2) and present related work (Chapter 3). Subsequently, in Chapter 4, we present
a short description of CellProfiler Analyst. Next, in Chapter 5, we provide an experi-
mental evaluation of deep subpopulation profiling and describe datasets, classifiers and
workflows used to model heterogeneity and extract profiles. Furthermore, we briefly ex-
plore the use of neural attention for automatic cell detection. Finally, we present a brief
summary of our work and conclusion (Chapter 6).

Chapter 4 has been derived from the following journal paper: D. Dao et al. ”CellProfiler
Analyst: interactive data exploration, analysis, and classification of large biological image
sets”, that has been published in Bioinformatics [7].



https://github.com/CellProfiler/CellProfiler-Analyst
https://github.com/daviddao/SUBPOP
https://github.com/daviddao/SUBPOP
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2. Preliminaries

The goal of this chapter is to introduce the reader to the two-fold background of this thesis.
In the following sections, we will give:

1. An introduction to image-based profiling, particularly, (1) its goal; (2) applications;
(3) the current processing pipeline using CellProfiler and (4) its advantages and chal-
lenges.

2. A quick walkthrough of deep learning, a branch of machine learning based on learn-
ing representations of data using deep graphs with linear and nonlinear transforma-
tions.

2.1. Image-based Profiling

Image-based profiling aims to capture and encode as many properties of a biological sam-
ple as possible. Although both screening and profiling involve large-scale high throughput
experiments, their goals differ [2]. Screening experiments aim to measure one or more par-
ticular features of a sample in response to a specific perturbation [10]. Hence, the identity
of a feature is typically of particular importance and object to targeted analysis and fur-
ther investigations. In contrast, profiling experiments capture a wide range of multiplexed
readouts without prior knowledge and use machine learning and data mining techniques
to identify similarities and differences among the measured patterns. Thus, the particular
measured features themselves become relevant only when informative similarities or dif-
ferences in patterns have been identified. Moreover, one can view profiling as an unbiased
approach to group samples and perturbations. It therefore has a higher chance to capture
unknown mechanisms compared to methods which depends on a biologist’s expertise to
interrogate a particular phenomenon (like in screening).

A standard profiling experiment consists of hundreds of plates, each of them can create
more than 500 million single-cell measurements. Finding an optimal representation for the
large amount of raw single-cell measurements is an open research question. A good profile
not only has to be able to capture as much information about the biological perturbation as
possible, but should also be robust against potential nuisance in the data (i.e experimental
artifacts, biological noise).

2.1.1. Applications for Image-Based Profiling

Image-based profiling can be used for a wide-range of applications and the potential im-
pact is immense. Studies in this field are varying from proof-of-principle to biological
discovery.
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Figure 2.1.: Current image-based profiling workflow - The current workflow consists of
following steps: data generation, feature extraction and profile calculation.
Usually high-throughput experiments are used to generate microscopy im-
ages. Automated software such as CellProfiler then extracts hand-crafted fea-
tures from the image set using image analysis. Finally profiles are extracted
from the features and predictions are made by using similarity measurements.

Drug discovery: Identifying mechanism of actions

In this thesis, we will focus on one of the important applications of image-based profil-
ing: Identifying biological mechanism of actions (MOA). A mechanism of action (e.g DNA
damage, DNA replication, etc.) is a biological response which is induced by (or correlates
with) a chemical perturbation. Being able to determine and group chemical compounds
into similar biological mechanism of actions is an important step to discover new drugs
[21] [22] and make predictions about novel and unknown compounds [12].

A substantial percentage of perturbations can produce morphological changes detectable
by microscopy [1]. These changes can reveal similarities among compounds in terms of
their phenotypic impact on cell populations. Many studies have demonstrated that mor-
phological profiles can correctly predict mechanism of action for compounds, by grouping
each unknown compound with already-annotated compounds, based on their phenotypic
similarity.

Other applications

However, it should be noted that image-based profiling of chemical perturbations such
as natural products, drugs, chemical compounds, has also been used to identify target
molecules [13], lead hopping [2] and create small molecule enrichment libraries [1]. In
functional genomics, image-based profiling of genetic perturbations (such as genetic over-
expression, CRISPR, RNAi and deletion strains) has been used to identify genetic regula-
tors [23], grouping disease-associated alleles [24], and disease-specific phenotypes [25].

2.1.2. Workflow using Expert-Engineered Features

The traditional workflow for image-based profiling is described in Figure 2.1. It can be
categorized into four steps: data generation, feature extraction, profile calculation and
prediction.
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Data generation

Profiling experiments are usually large-scale high-throughput and involve imaging multi-
well plates containing several stained samples of interest per well [26]. Biological samples
are treated either with a compound concentrations of interest or DMSO, which serves as a
negative control.

Each well is screened in regular time steps and generates nine (three by three) images
per screening. It is important to keep track which images are sampled from the same well
(or plate) because these images tend to correlate in feature space (inter-well and inter-
plate variation). Another challenge biologists have to face are experimental artifacts. For
example, wells located on the edge of a plate have a slightly lower temperature causing
cells in these samples to behave differently (known as batch effect [4]).

After the data is generated, profiling becomes solely a computational task.

Feature extraction using CellProfiler

CellProfiler [15] [16] is a widely-used open-source image analysis software to quantita-
tively measure phenotypes from thousands of images automatically. CellProfiler is able to
efficiently identify and segment single cells from image datasets. However, due to its use
of traditional computer vision algorithms, such as Otsu’s method [27], CellProfiler requires
various user-defined inputs (e.g segmentation thresholds). After extracting each cell from
the image, CellProfiler measures hundreds of features (i.e. cell texture, intensities, corre-
lations, area, shape and size) and store them into a database. In the following chapters,
we will refer to these features as CellProfiler (CP) features for clarity. These features are
expert-engineered and several studies in the past have proven their usefulness for screen-
ing and profiling experiments. A complete list of all CP features for three channels (DNA,
Actin, Tubulin) can be found in supplemental material of [3].

Profile calculation

Before applying any profiling methods, each feature is scaled such that the 1st percentile
of DMSO-treated cells (negative control) is set to zero and and the 99th percentile is set to
one for each plate separately in order to remove inter-plate variation.

There are several methods to compute per-sample profiles from single-cell measure-
ments:

* Means - The average is taken over all scaled features for each sample. Variations
of this method include taking medians, modes, or means combined with standard
deviations.

¢ KS statistic - The KS statistic [28] is calculated by taking the maximum distance
between the empirical cumulative distribution functions. The i-th element of the per-
sample profile is the Kolmogorov-Smirnov (KS) statistic between the distribution of
the i-th measurement of the cells in the sample with reference to the negative control
on the same plate.
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* SVM - Support Vector Machines [29] are trained to distinguish cells in each sam-
ple from negative control on the same plate. The normal vector of the seperating
hyperplane is adopted as a profile of the sample.

¢ Gaussian mixture (GM) modeling - In order to better characterize heterogeneous
cell populations, Slack et al. [30] proposed to model the data as a mixture of a small
number of Gaussian distributions and profile each sample by the mean probabilities
of its cells belonging to each of the Gaussians. The data was fit using the expectation-
maximization (EM) algorithm and the best number of Gaussians was chosen empir-
ically and by hand.

* Factor analysis - Although profiling captures many morphological features of each
cell, it is the underlying biological effects that are of interest. Young et al. used factor
analysis to discover such underlying effects. This method attempts to describe the
covariance relationships between the image measurements x in terms of a few latent
random variables y called factors.

Means and KS statistic can directly compute per-sample profiles while SVM and factor
analysis requires a subset of the data for supervised training. Gaussian mixture models
aim to incorporate subpopulation information into profiles but require manual model se-
lection in order to determine the best number of Gaussians.

In the only comparison between current profiling methods [3], the means method out-
performs the other presented methods. A detailed review of the results can be found in
Section 3.1. This is surprising because the means method seems to throw away valuable
single cell information by taking the population average instead of leveraging cellular het-
erogeneity (like Gaussian mixture modeling).

Prediction

After computing per-sample profiles, we can use a distance metric (cosine, euclidean, man-
hattan) between the profiles as a measure of similiarity. Each sample is predicted to have
the class of the closest profile (nearest-neighbor classification). Clusters of profiles can be
either detected via k-means or visualized via PCA or t-SNE.

2.1.3. Advantages and Challenges

Until recently, only a single modality - mRNA profiling - has been feasible in high-throughput.
Gene-expression profiling has seen many successes, but is limited to detecting mRNA lev-
els only. Biological images contain far more information than is typically harvested. Fur-
thermore, image-based profiling has several promising advantages:

* Reproducibility - It is rapidly becoming clear that microscopy images hold suffi-
ciently rich and reproducible quantitative information [31].

¢ Single-cell resolution - Unlike mRNA profiling, imaging offers single-cell resolu-
tion, capturing population heterogeneity and perturbations that affect small subsets
of cells.
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¢ Usefulness - Centuries of experience testify to the usefulness of visual phenotypes
for interrogating biological processes, pathways, and complex disease processes.

¢ Low-cost - Morphological profiling is currently a fraction (25%) the cost of high-
throughput gene expression profiling (L1000 or RNA-Seq).

* Not redundant - Morphological profiling is not redundant with gene expression pro-
filing. Initial data from both small molecules and gene overexpression indicates the
two readouts capture different information about cell state.

However the field of image-based profiling faces multiple computational challenges:

¢ Optimal representation - How to map raw, single-cell measurements to optimally
useful perturbation profiles is an open research question. There is a need for further
research on methods for capturing heterogeneity in profiles.

¢ Feature redundancy - CellProfiler features themselves are typically redundant. Fur-
thermore, due to its non-linear dependencies, it is difficult to identify these associa-
tions, thereby making feature selection non-trivial. Identifying appropriate similar-
ity measures and dimensionality reduction methods for morphological profiles is an
open problem.

¢ Manual labeling - Although there is a wealth of raw data, cell-level labels are scarce
and tedious to generate, making research on heterogeneity profiles difficult.
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2.2. Deep Learning

Computer vision is currently experiencing a paradigm shift, rapidly moving from tradi-
tional feature engineering to modern feature learning. Since Krizhevsky et al.’s deep neural
network won the ImageNet competition in 2012 [32], representation learning using deep
learning has become the predominant strategy in computer vision tasks such as object de-
tection [9] or segmentation [33]. Intriguingly, different flavors of deep neural networks
also proved to be superior in a variety of tasks such as natural language processing and
speech recognition [34], machine translation [35], automatic image captioning [36], novel
art generation [37], human-level video game play [38] and even mastering the game of
Go [39]. In this section, we will go into details of a feed-forward neural network and talk
about tricks of the trade such as batch normalization and initialization. Furthermore, we
will introduce two extensions of the basic feed-forward neural network architecture: con-
volutional neural networks for computer vision [40] and residual learning for training very
deep neural networks [9].

2.2.1. Feed-Forward Neural Networks

A feed-forward neural network consist of one input layer, H hidden layers and one output
layer. Each layer consist of units (or neurons) where each unit of a given layer is fully-
connected to every unit of the previous layer. See Figure 2.2 for a schematic view.

The graphical representation can be described mathematically as a combination of ma-
trix multiplication and activation functions. The activation function models when an arti-
ficial neuron fires and is usually a non-linearity. In theory, it is this non-linear activation
function, which allows the network to learn any function approximation. Each unit in a
hidden layer can be mathematically described by:

yi = f(z) (2.1)

5
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Figure 2.2.: Schematic view of a FCN. Schematic of a simple two layer fully connected
neural network (FCN). The red marked units are the inputs. The blue marked
units represent the hidden layer. The green units represent the output layer.
Each arrow corresponds to a weight connecting the units. Image reprinted
from [41]
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Zj = Zwijﬂfi + bj (22)

where y; is the output of the unit from the current layer, f(-) is a (non-linear) activation
function, z is called the preactivation, w denotes the edge weights and z; is the output of a
unit from the previous layer. At each layer, we first compute the total input z to each unit,
which is a weighted sum of the outputs of the units in the layer below. Then a non-linear
function f(-) is applied to z to get the output of the unit.

Any differential function can serve as activation function of a neural network. Some
common activation functions are the sigmoid, f(z) = 1/(1 4 exp(—=z)), the hyperbolic tan-
gent, f(z) = (exp(z) —exp(—=z))/(exp(z) +exp(—z)), or the rectifier linear unit (ReLU). Un-
less stated otherwise, we will use ReLU (see Equation 2.3) as activation function through-
out this work.

f(z) = max(0, 2) (2.3)

Training a neural network consists of iterating between two steps: A forward pass (see
Figure 2.2 a), followed by error backpropagation (see Figure 2.2 b). Given the input, a for-
ward pass calculates the output of each unit. A predefined cost function E then compares
the resulting outputs y,,; with the correct answer and determines the error derivatives.
Common cost functions are mean squared error or crossentropy loss.

Initialization

In order to be able to train a deep neural network, it is important to correctly initialize
the weights and introduce a source of asymmetry between neurons to enable learning and
prevent vanishing gradients (as discussed in detail in Subsection 2.2.3). In the following
we will describe some common initialization strategies:

¢ Zero-initialization - With proper data processing, approximately half of the weights
will be positive and half of them will be negative. A reasonable-sounding idea then
might be to set all the initial weights to zero. Unfortunately this would cause every
neuron in the network to compute the same output, thus undergo the exact same
parameter updates and learning would fail.

* Random initialization - Weights are all randomly sampled (e.g from a Gaussian),
close to zero and unique in the beginning, thus computing distinct updates.

¢ Xavier initialization - One problem with random initialization is that the distribu-
tion of the outputs from a randomly initialized neuron has a variance that grows
with the number of inputs [42] . Glorot et al. hence recommend to initialize from a
gaussian distribution with zero mean and Var(w) = 2/(n, + nout) where ngy,, nous
are the number of units in the previous layer and the next layer.

¢ He initialization - Based on the Xavier initialization, a recent paper by He et al. [42]
derives an initialization specifically for ReLU neurons and suggest to initialize the
weights from a gaussian distribution with zero mean and Var(w) = 2/n;,. We will
use He intialization throughout the thesis.

11
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Batch normalization

Normalization (zero-mean and unit variance) is one of the most important data prepro-

cessing steps, making the data comparable across features. However, as the data propa-

gates through a deep network, the weights and parameters adjust those values, sometimes

making the data too big or too small again - a problem known as “internal covariate shift”.

Batch normalization [43] avoids this problem by normalizing the data in each mini-batch:
. Tl

=T = = Tnorm = YT + (2.4)
g

In Equation 2.4, x and ¢ are mean and standard deviation of a mini-batch (during train-
ing) or the whole training set (during test time) , v and 3 are scale and shift parameters,
which are learnable (analogous to weights). Batch normalization greatly accelerates train-
ing time and makes a deep network less sensitive to initialization issues.

Backpropagation

Deep neural networks learn via iterative backpropagation. Backpropagation is a gradient
based method that uses the chain rule of derivatives

0z 0z 0y
— = 25
dr Oyox 25)

to obtain updates for the weights based on the loss. In order to teach our neural net-
work the desired output y,,:, we optimize the cost function E using gradient descent. The
gradient of the loss with respect to the weights W, of a layer [ and a neural network with
depth n can then be found by using the chain rule:

oF _ OF OYout 0Zout OYn—1 0z

A E = = . 2.6
W 8I/Vl ayout 6Zout 8@/71—1 8zn—1 an ( )
Each term can be evaluated independently:
oy Of (=)
= = 2.7
82’[ 82’[ ( )
01 _y, 2.8)
0Yy1—1
0z
=y_ 2.9
oW, Yi—1 ( )

Using those results one can easily multiply the derivatives to obtain the gradient Ay E(yout)-
This gradient can then be used to perform a gradient descent update:

VVltH = VVzt - UAWliE(yout) (2.10)

where W, Wt are the current weight matrix and weight matrix after the update, respec-
tively and 7 is the learning rate.

12



2.2. Deep Learning

Weight update

Normally, it is inefficient to calculate the gradient over the whole dataset to obtain the true
gradient. Because of that, neural networks often use mini-batches to approximate the true
gradient with random sampled data points. Once the analytic gradient is computed with
backpropagation, the gradients are used to perform a parameter update. There are several
approaches for performing the update:

¢ Stochastic gradient descent (SGD) - is the simplest possible update and changes the
parameters along the negative gradient direction.

* Momentum - is another approach that almost always enjoys better converge rates on
deep networks than SGD. Instead of directly integrating the position (like in SGD),
the gradient only influences the “velocity” term, which in turn has an effect on the
position.

¢ Nestorov Momentum - is a slightly different version of the momentum update [44].
The main idea is instead of evaluating the gradient at the current position, we first
perform a momentum step and then evaluate the gradient at a “looked-ahead” po-
sition. Due to its stronger theoretical converge guarantees for convex functions, we
will use Nesterov momentum as our default parameter update in this thesis (unless
stated otherwise).

We note that optimization for deep networks is currently a very active area of research
and there are a variety of different strategies besides SGD, such as second-order methods
(L-BFGS) and per-parameter adaptive learning rate methods (RMSprop [45], Adam [46])

7

input hidden output
(2) (2 sigmoid) (1 sigmoid)

i

Figure 2.3.: Representation learning - In this illustrative example we use two input units,
two hidden units and one output unit as our feed-forward network (visualized
by the connected dots). The task is to classify the values of a two-dimensional
function according to the blue or red class. One can see how the network draws
a non-linear decision boundary in input space by transforming the input space
into a hidden space in which the data is linearly separable. This can be seen be-
neath the hidden layer of the neural network. Image reprinted with permission
from C. Olah (http://colah.github.io/)

13


http://colah.github.io/

2. Preliminaries

Classification

One of the most common problems for neural networks is the classification of data into
given classes. To solve this task, neural networks use its hidden layers as multiple abstrac-
tions to transform the data into a space in which the data points are linearly separable.
One can think of the hidden layers of a classification network as a feature extraction algo-
rithm. Figure 2.3 shows a simple two layer network with sigmoid output layer used for
classification. The network can distort the input space to make the classes of data linearly
separable.

2.2.2. Convolutional Neural Networks

Inspired by the biological receptive field in our eyes, convolutional neural networks (CNN)
are the standard neural networks for computer vision. CNNs incorporate spatial invari-
ance in its architecture (see Figure 2.4) by applying multiple convolutional layers to the
image, while filtering the information using pooling layers. Invariance to spatial informa-
tion is important for tasks like object recognition, where we only care about the presence
of an object independent of its location. Convolutions are a sequence of inner products of
a given filter (or kernel) with pieces of a larger image. Mathematically a one-dimensional
discrete convolution of a kernel vector g of size over a vector f at position c can be ex-
pressed as:

(fxg)(c)=>_ fla)g(c—a) (2.11)

Equation 2.11 is highly parallelizable (thus optimal for GPUs), since the kernel is the same
throughout the image. We can think of a convolution as sliding one function on top of
another, multiplying and then adding.

Convolutional layer

In CNNs, convolutions are stacked to extract multiple layers of spatial related features.
Each convolutional layer of a neural network extracts multiple so-called feature maps.
Each feature map relates to a separate convolutional kernel which is applied to the input

Convolution Pooling Convolution Pooling Fully Fully Qutput
Connected Connected

[ o AN

Figure 2.4.: Architecture of a convolutional neural network - Convolutional neural net-
works (CNN) consist of convolutional and pooling layers for feature learning,
followed by a fully connected network for classification.
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2| 2 1 2 1 -2 1 1 1 0 |l -1

0 1 2 || -1 1 3 0 0 1 2 |1 1 3110

Figure 2.5.: 1-d convolution with stride - 1-d convolution of a kernel (green) on input
(gray) using stride set to one (left) and stride set to two (right). Image reprinted
from [41].

of the layer. A stride parameter defines how far to move the filter between each step of
the convolution (see Figure 2.5). Similar to feed-forward neural networks, the weights are
initialized and learned via backpropagation (see Section 2.2.1).

As already demonstrated in Figure 2.3 for feed-forward networks, a CNN uses its hid-
den layers as feature extraction. The output (not the filters) of each layer is a feature map
corresponding to the output for one of the learned features, detected at each of the image
positions. Zeiler et al. [47] showed that earlier convolutional layers act as lower-level fea-
ture extractor (i.e. oriented edge detection), while later layers are able to detect high-level
features (i.e. detecting a wheel from a car).

Pooling layer

Another important building block for CNNSs is the pooling layer. A pooling layer reduces
the size of the feature maps, thus reducing the model size and keeping computations
tractable. One simple version is the max-pooling layer, which uses a sliding window over
the input and selects the maximum of each window (see Figure 2.6).

Data augmentation

Convolutional neural networks tend to overfit on small datasets. To overcome overfitting,
it is common to increase the size of the dataset using data augmentation. One augmenta-
tion method is to add cropped versions of each image and their horizontal flipped images

224x224x64

112x112x64 Single depth slice
ot A gl t|1)1]2]4
Il"’ max pool with 2x2 filters
5 [6(7 |8 and stride 2 6| 8
| x 3(2|1/0 3|4
1123 |4
2 Y sy B
112
224 y

Figure 2.6.: Pooling layer - Stacked convolutions can cause very large feature maps, mak-
ing the next convolution computationally intractable. Max pooling is a simple
and effective way to downsample the feature maps. Image reprinted from [41]
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to the dataset. To save memory, this method is usually performed online while training
the CNN. Before passing the input to the hidden layers, the neural network will instead
pass all images to a data transformation unit. The unit then flips the image horizontally
with probability 0.5. Afterwards, it randomly crops fixed tiles of the image and rescales it
back to its original size. The new augmented input is then given to the neural network as
training data.

Model selection & VGG architecture

CNN s introduce a number of additional hyperparameters such as kernel size, depth of the
feature maps and numbers of convolutional and pooling layer. How to optimize these hy-
perparameters in a systematic way is not well understood. Strategies vary from random
search through parameter space to bayesian optimization, where probabilistic methods are
used to predict the best next hyperparameter to test given previously tested hyperparam-
eters [48]. Thus, Simonyan et al. [40] introduced a simple deep convolutional architecture,
VGG, which was able to win the second place in the 2014 ImageNet competition. A VGG
network consists of blocks of three convolutional layers (with kernel size 3 x 3) followed
by a max pooling layer. The corresponding feature map depth of each block increases lin-
early by power of two. For example for ImageNet (224 x 224 px input), VGG uses following
feature map depths: 64,128, 256 and 512.

2.2.3. Residual Learning

Deeper neural networks are more difficult to train. Beyond a certain depth (usually around
10+ layers), traditional deeper networks start to show severe underfitting caused by two
reasons:

* Vanishing / exploding gradients - gradients in deep neural networks tend to be un-
stable and either vanish [49] or explode in earlier layers, causing it to learn at wildly
different speeds. This problem can be addressed with initialization techniques (see
Section 2.2.1) that try to start the optimization process with an active set of neurons.

* Harder optimization - according to He et al. [9], when a model introduces more
parameters, it becomes more difficult to train the network due to (yet unknown)
optimization issues. This is not simply an overfitting problem, since adding more
layers leads to even more training errors.

Residual learning is a recently introduced framework which eases the training of net-
works that are substantially deeper than those used in previous settings. It opens up the
possibility to train very deep residual neural networks (ResNets) with compelling accuracy
while keeping the complexity low. On the ImageNet dataset, He et al. evaluate residual
nets with a depth of up to 152 layers (also called ResNet-152) and show that, although 8 x
deeper than VGG nets [40], it has fewer parameters.

Residual layer

The main idea behind residual learning is simple: Instead of learning a new representation
H(z) at each layer, deep residual networks use identity mappings for every two layers to
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A * l 8 * Y
weight layer weight layer
stazEeydtgsers v relu v relu identity
weight layer weight layer X
l relu
H(x) H(x)=F(x)+x

Figure 2.7.: Residual layer architecture - Given any two stacked layers, a residual layer
introduces a identity connection (a simple addition) between the input and the
output. Surprisingly, this simple trick will allow us to train very deep neural
networks. Image reprinted from [9]

learn an “easier” residual function F'(z) where H(x) = F(x) + z (see Figure 2.7). The hope
is that the two weight layers fit rather residual F'(z) than H(z). Furthermore, assuming
that our data might have a strong linear component, residual connections allow us to in-
corporate this assumption directly into our network’s architecture. Thus, if the identity
mapping was the optimal transformation (or close to it), all weights are set to 0 (or to a
small fluctuation around 0).

Smooth propagation

Another advantage of residual neural networks is their smooth forward and backward
propagation. While plain neural networks have a multiplicative outcome: =7, = [~ Wiay,
the forward propagation of a ResNet is additive:

L—-1

wp=x+ Y, flx) (212)
i=l

Furthermore, using the insight that any z, can be fully described by any x; plus residual,
one can easily derive an additive term for backward propagation:

OE OE dx;, OE o L=
- = = 14+ = i 2.13
ox; Oxp Ox 81:,;( * oxy ; fl@:) ( )
In contrast to the multiplicative term in a plain feed-forward network: g—E = ]_[.L:_ll Wiaa—E,
] 1 Ty,

any (?TEL is directly back-prop to any derivative g—i plus residual. Moreover, the additive
property also makes the gradient unlikely to vanish, thus preserving it even through back-
ward propagation of hundreds of layers.

Bottleneck architecture trick

In order to increase depth, while keeping the training time affordable, ResNets use a clever
trick called Bottleneck architecture to replace two convolutional layers with three layers. For
each residual function F'(z), He et al. use a stack of three layers instead of two (see Figure
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2.7). The three layers have 1 x 1, 3 x 3, and 1 x 1 convolution kernels, where the 1 x 1
layers are responsible for reducing and then increasing (restoring) dimensions, leaving the
3 x 3 layer a bottleneck with smaller input/output dimensions. The advantage is that it is
deeper than the two layer design while having similar complexity (number of parameters).
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3. Related Work

This chapter presents related work in machine learning for image-based profiling. The
first section focuses on traditional machine learning methods as presented in Ljosa et al.
[3]. The author reviews different classical profiling methods which have been tested on
the BBBC021 dataset. As seen in later sections, the results serve as useful baseline for com-
parisons. Second, we will explore how deep learning has been used to directly improve
image-based profiling. However, limited research has been done in this field.

3.1. Comparison of Profiling Methods on BBBC021

Ljosa et al. [3] use the BBBC021 dataset and extracted single-cell features as described in
Section 2.1. Proposed methods to generate treatment profiles for MOA classification are
then compared using those features. Predictions about the MOA of each treatment is made
using a nearest neighbor classifier based on the cosine distance. The authors evaluated
the classifier by using the leave-one-compound-out cross-validation method, where all
profiles of one compound are held out and the model was trained only on the remaining
compounds. This is important because in the absence of a appropriate holdout strategy, a
model is able to train on images of the same compound which introduces a significant bias
in testing. The pipeline is shown in Figure 2.1.

The methods being compared are mean profiling, factor analysis, KS statistics, Gaus-
sian Mixture Models and SVM, which we introduced in the previous section. Factor anal-
ysis was conducted on a subset of the features from the negative control set, which is
not used for classification. The found factors were then used to transform the rest of the
data. It turns out several methods from literature are not better than the simplest method,
mean profiles. Mean profile classification achieved an MOA classification accuracy of 83%,
whereas actor analysis followed by mean profiling achieved 94% (see Table 3.1). As men-
tioned in the previous chapter, these high accuracies are rather surprising due to the fact
that population averaging seems to throw away a lot of valuable data about cellular het-

Method Accuracy in %
Means 0.83
KS statistic 0.83
Normal vector to support vector machine hyperplane 0.81
Distribution over Gaussian mixture models 0.83
Means + FA analysis 0.94

Table 3.1.: Accuracies for classifying compound treatments into mechanism of actions as
reported in Ljosa et al. [11]
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erogeneity.

Even though population averaging already achieves high accuracies, there is reason to
believe that methods, which can efficiently capture cellular heterogeneity, could increase
the classification accuracy and make profiling more interpretable (see Chapter 5). This
is because cellular subpopulations have been observed to be a fundamental property of
cellular systems.

3.2. Autoencoders for MOA classification

First attempts on using deep learning for image-based profiling on BBBC021 were pre-
sented in a paper by Kandaswamy et al. [50]. The authors used stacked autoencoders for
layer-wise pretraining of a neural network on single-cell CellProfiler features. The Cell-
Profiler features were generated using the same workflow as described in Ljosa et al. [3].

The pretrained network is then used directly as a classifier to classify single cells into
one of the given MOAs. Moreover, the authors experimented with transfer learning: The
dataset was divided into two sets of six MOAs each. Using this setup, they tested how
transferable features learned on one set were for the classification of the other set.

Using leave-one-compound-out cross-validation, the neural network was able to achieve
a classification accuracy of 87.9%. This outperforms most classic profiling method but is
more complex and worse than the presented factor analysis approach. Furthermore, it is
argued that the division of the data to form a transfer learning task shows that pretrained
models can be used to save time of training the model. However, it is still necessary to
fine-tune the model on the new dataset.

3.3. Convolutional Neural Networks for MOA classification

A recent paper by Kraus et al. [18] presents a novel CNN pooling layer for image-based
profiling. The main idea is to use a convolutional neural network as an initial feature
extractor, which outputs multiple feature maps that correspond to the total number of
classes present in the dataset (for BBBCO021 that is the number of MOAs). A custom global
pooling function ¢(-) was used to account for multiple instances of different classes and
aggregate all instance probabilities (see Figure 3.1). The author argued that a noisy AND
pooling function achieved the best results.
The noisy AND pooling was given by

() — o(a(pij — b)) — o(—ab;)
Bi = gi(pij) = 0(&(1]— o o leabd) (3.1)
pij = Ul-‘zpij (3.2)

and p;; refers to the probability of an instance being present in feature map i at position
J, ais ahyperparameter defining the sharpness of this transformation and b are the weights
learned by the network.

Using this method, it is reported that a MOA classification accuracy of 98.8% was achieved.
However, those results are not comparable with the results obtained by Ljosa et al. [3],
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g(pn’p,'g’p,'g’ '")

convolutional network MIL pooling layer

Figure 3.1.: Schematic multiple instance learning model - Used by Kraus et al., a global
pooling function aggregates instance probabilities from feature maps, ex-
tracted by the initial CNN. Image reprinted from [18]

because the method was tested without using leave-one-compound-out cross-validation.
Furthermore, only a subset of the whole dataset was evaluated.
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4. CellProfiler Analyst

CellProfiler Analyst allows the exploration and visualization of image-based data, together
with the classification of complex biological phenotypes, via an interactive user interface
designed for biologists and data scientists. In the later chapters, we will extensively use
CellProfiler Analyst in our workflow to extract subpopulation phenotypes and train base-
line classifiers.

Thus, the goal of this chapter is to introduce the reader to CellProfiler Analyst and
present (1) an overview of its functionality and (2) explore its key features, Image Gallery
and Classifier, in more detail.

4.1. System overview

CellProfiler Analyst is an open-source software for biological image-based classification,
data exploration and visualization with an interactive graphical user interface. Using data
from feature extraction software such as CellProfiler, CellProfiler Analyst offers easy-to-
use tools for exploration and mining of image data, which is being generated in ever in-

CellProfiler Analyst 2.2.0

T R T R/ | L] S

Image Gallery Classifier Plate Viewer Scatter Plot Histogram Density Plot Box Plot Table Viewer

Loading image from "Images/AS_09125_050116000001_C11f00d0.png"
Loading image from "images/AS_09125_050116000001_C11f00d1.png"
Loading image from "Images/AS_09125_050116000001_C11f00d2.png"
Loading image from "images/AS_09125_050116000001_C17f03d0.png"
Loading image from "Images/AS_09125_050116000001_C17f03d1.png"

mage from "images/AS_09125_050116000001_D16f00d0.png"

mage from "images/AS_09125_050116000001_D16f00d1.png"

mage from "images/AS_09125_050116000001_D16f00d2.png"

mage from “images/AS_09125_050116000001_D11f03d0.png"

mage from “images/AS_09125_050116000001_D11f03d1.png"

mage from “images/AS_09125_050116000001_D11f03d2.png"

ng image from "Images/AS_09125_050116000001_B12f02d1.png"
Loading image from "images/AS_09125_050116000001_B12f02d2.png"
Loading image from "Images/AS_09125_050116000001_B05f01d0.png"

Loading image from “images/AS_09125_050116000001_B05f01d1.png"

Figure 4.1.: Main view - CPA offers a wide variety of tools such as Image Gallery, Classifier,
Plate Viewer and standard plotting tools. They can be navigated via the main
view.
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creasing amounts, particularly in image-based profiling. Its tools can help identify com-
plex and subtle phenotypes, improve quality control and provide single-cell and population-
level information from experiments. CellProfiler Analyst 2.0, completely rewritten in Python,
builds on these features and adds enhanced supervised machine learning capabilities (Clas-
sifier), as well as visualization tools to overview an experiment (Plate Viewer and Image
Gallery).

Compared to other commonly-cited open-source biological image classification soft-
ware like Ilastik [51], CellCognition [52] and WND-CHARM [53], CellProfiler Analyst
has the advantage of containing companion visualization tools, being suitable for high-
throughput datasets, having multiple classifier options, and allowing both cell and field-
of-view classification. Advanced Cell Classifier [54] shares many of the classification fea-
tures of CellProfiler Analyst, but it lacks HCS data exploration and visualization tools.
Compared to command-line-based data exploration software like cellHTS [55] and image-
HTS [56] and the web tool web CellHTS2 [57], CellProfiler Analyst provides interactive
object classification and image viewing. Several other software tools (e.g. the HCDC set of
modules for KNIME [58] ) are no longer available/maintained.

The software is free and open source, available at http://www.cellprofiler.org
and from GitHub under the BSD-3 license. It is available as a packaged application for
Mac OS X and Microsoft Windows and can be compiled for Linux. We implemented an
automatic build process that supports nightly updates and regular release cycles for the
software.

Furthermore, we provide a complete and updated manual for CellProfiler Analyst 2.0 at
http://cellprofiler.org/cpa/.

4.2. Visualization tools

Many large-scale imaging experiments take place in multi-well plate format. Researchers
are often interested in seeing their data overlaid on this format, to check for systematic
sample quality issues, or to see results from controls placed in particular locations, at a
glance. CellProfiler Analyst’s Plate Viewer tool displays aggregated and/or filtered mea-
surements (according to customizable color maps) or a thumbnail image for each well.
Automatically imported annotations can be viewed, and individual annotations can be
manually added or deleted for each well.

In addition to Plate Viewer and standard visualization/exploration tools such as his-
tograms, scatter and box plots, CellProfiler Analyst 2.0 also offers a convenient Image
Gallery tool (see Figure 4.2). Image Gallery provides a grid view allowing an overview of
images from imaging experiments. A variety of options are provided to filter images based
on experiment-specific metadata, e.g. gene name, compound treatments, compound con-
centration. Multiple filters can be combined to refine the search. Images can be displayed
and exported as a custom-sized thumbnail or in full resolution, and the color assigned to
each channel in the image can be customized to highlight structures of interest. Individ-
ual segmented cells can be extracted and viewed for each image, and can be dragged and
dropped into the Classifier window. This is especially useful in order to quickly generate
deep learning training sets.
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4.3. Classifier

CPA/ImageGallery - example.properties

Fetch  range 4| of image IDs: 1 to 100 images from | experiment | <] Fetch!

image gallery (100)

objects of selected image (117)

Fetched images 1 - 100 from whele experiment

Figure 4.2.: Image Gallery - CellProfiler Analyst’s gallery view allows to explore whole im-
ages in an experiment, and cells in individual images. The upper area displays
full images from the imaging experiment. Using right-click on these images,
one can display all its single cells as image tiles in the lower area. Furthermore,
it is possible to conveniently export single cell tiles in order to train machine
learning models.

4.3. Classifier

CellProfiler Analyst 2.0’s Classifier (see Figure 4.3) can perform cell and image-level clas-
sification of multiple phenotypes (multi-class) using popular models like Random Forest
and LDA from the high performance machine learning library scikit-learn [20]. First, cell
or whole image samples from the experiment are fetched and sorted by drag and drop into
researcher-defined classes, making up the annotated training set. Fetching can be random,
based on filters, based on per class predictions of an already-trained classifier, or based
on active learning. The active learning option speeds annotation by presenting uncertain
cases. In addition, researchers can view full images of each sample and drag and drop cells
from the image for annotation. Next, a classifier is trained on this set. After training on the
annotated set, a model’s performance can be evaluated by a k-fold cross validation (where
k is adjustable by the user) in the form of a confusion matrix and precision, recall and F1
score per class. The model can then be used to quantify cell phenotypes or whole-image
phenotypes.
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(6] @ CPA/Classifier - example.properties
Fetch 200 random d cells from experiment d Fetch!
Use RandomForest Classifier d display 5§ top features Train Evaluate Score All Score Image

Nuclei_Intensity_pH3_StdintensityEdge
Cells_Texture_3_pH3_GaborX

unclassified (200}

positive (22) negative (46)

Classifier trained in 0.17s Add new class

Figure 4.3.: Classifier - CellProfiler Analyst’s Classifier provides multiple machine learn-
ing algorithms that can be trained to identify multiple phenotypes in single
cells or whole images, by using simple drag and drop of cell tiles. The biol-
ogist can fetch single cell data from the experiment using different strategies
(random, predictive, active). The images will then be displayed in the upper
area and can then be sorted into classes (lower area). This is useful for quickly
hand-labeling a training set.
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A central challenge of biology is to understand how individual cells respond to pertur-
bations. It is known that cell-to-cell differences are always present to some degree in any
populations of “seemingly identical” cells. Thus, heterogeneity has been long speculated
to be a fundamental property of cellular systems and it has been observed for essentially
all dimensions of single-cell measurements at high resolution.

Despite that, most prior image-based profiling ignore population heterogeneity (See
Chapter 3). In fact, the common profiling approach is to aggregate and summarize the
single-cell measurements feature-wise across the cells in a sample. However, mean pro-
files (averaging population distributions) can mask the presence of rare or small subpop-
ulations of cells and ultimately diminish signals.

The idea of subpopulation profiling is to extract different modes of phenotypes in cells
and represent a sample by proportions of cells it has in each category. Thus, subpopulation
profiling faces two problems:

¢ How can we identify meaningful subpopulations of cells?

¢ How can we use subpopulation information to create profiles?

In this chapter, we introduce a supervised subpopulation workflow for image-based
profiling using deep residual learning. First, we describe the previously published BBBC021
dataset. All experiments within this dissertation have been conducted on this dataset. Sec-
ond, we describe how we use CellProfiler in combination with CellProfiler Analyst to iden-
tify and extract a subpopulation dataset of 2526 cells with 23 different nuclear phenotypes

Hand-labeled
training set

BBBCO021 dataset ¥ CellProfiler Analyst Evaluation

Figure 5.1.: Workflow for supervised subpopulation training - The BBBC021 dataset con-
tains images of breast cancer cells which have been treated with 38 different
compounds at various concentrations. We used CellProfiler Analyst (CPA)
to identify 23 different nuclear phenotypes and create a training set contain-
ing 2526 hand-labeled cells. Furthermore, we evaluated the training set using
CPA’s classification algorithms.
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from BBBCO021. Afterwards, we train a deep residual neural network on the subpopula-
tion dataset and classify all cells from BBBC021. The accuracy of the residual network
is compare with several traditional machine learning methods from CellProfiler Analyst.
Finally we leverage the extracted subpopulation information to create compressed and
interpretable morphological profiles.

5.1. BBBC021 dataset

The BBBC021 dataset is a well studied benchmark imaging dataset, freely available from
the Broad Bioimage Benchmark Collection (BBBC). It was originally created through a
compound-profiling experiment to study the biological mechanism of action (MOA) in-
duced by a single treatment (see Section 2.1.1). A treatment is specified by the compound
and its concentration. The dataset contains 13200 images of human MCF7 cancer cells
which have been treated with 38 different compounds at various concentrations (108 treat-
ments in total). Additionally, each image contains three stains (DNA, Actin and Tubulin).
Cells treated with DMSO serve as negative control.

An extensive comparison of traditional image-based profiling on this dataset are from

Aurora kinase inhibitors

Actin disruptors
«p .

Cholesterol-lowering DNA damage

cytochalasin D, 0.3uM AZ-A, 1.0pM simvastatin, 6.0 uyMm etoposide, 10.0 uM

Kinase inhibitors

DNA replication Epithelial

Eg5 inhibitors
! " e
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2
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camptothecin, 0.01 pM AZ-COApM AZ-J1.0pM alsterpaullone 1.0 uM

Microtubule destabilizer Microtubule stabilizer Protein degradation Protein synthesis

demecolcine 1.0 pM epothilone B, 1.0 pM lactacystin, 10.0uM emetine, 0.3 pM

Figure 5.2.: MOA classes in BBBC021 - BBBC021 image set contains 38 unique compounds
that fall into 12 MOA classes. In this figure, we listed 12 compounds, each
representing a distinct MOA. As one can see, MOAs are visually distinctive
(Egb inhibitor and actin disrupter), while others are visually similar to each
other (DNA damage and DNA replication). Red color shows actin stain, green
shows tubulin stain, and blue shows DNA stain.
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Ljosa et al. [3] as presented in Chapter 3.1. The corresponding deep learning results were
published by Kraus et al. [18] as explained in Chapter 3.3.

A subset of the compound-concentrations have been identified as clearly having one of
12 (including DMSO /negative control) different primary mechanism of action (see Figure
5.2). The classification of different MOAs depends on the presence of visual differences in
the microscopy images. This turns out to be a non-trivial task due to the fact that BBBC021
contains a hierarchical similarity structure: Although images with the same underlying
MOA look similar, images from the same compound usually look more similar than im-
ages from another compound but with the same MOA. Furthermore, differences between
phenotypes were in some cases very subtle: Ljosa et al., who first published this dataset,
were only able to identify 6 of the 12 mechanisms visually; the remainder were defined
based on the literature.

In order to answer the question, if subpopulation profiles can improve image-based
profiling, we devised the following test using BBBC021 as benchmark dataset.

Existing profiling methods (as described in Section 3.1), had achieved up to 94% accu-
racy in predicting compound’s mechanism of action. In the remaining DNA channel, the
visual differences were much more subtle. Using CellProfiler, due to only one information
channel (instead of three) we were only able to extract 94 features (in comparison to 453
features for three channels). We reproduced Ljosa et al.’s experiment on this more diffi-
cult data set and observed that the accuracy of the two best methods, mean profiles and
factor analysis, fell to 67% and 68% (see Table 5.1). Both methods did not model cell het-
erogeneity, as they were simply averages of image features across the cells (mean profile)
or transformations of population averages (factor analysis). Hence, they serve as useful
baseline for comparison.

5.2. Hand-Labeled Subpopulations

The following experiments do not use the raw images of the BBBC021 dataset because of
their large size of 1280px x 1024px, which strains memory constraints and computational
cost. Instead, CellProfiler is used to segment single cells within the images using Otsu’s
method. Using CellProfiler Analyst’s Classifier (see Section 4.2), those segmentations are
then used to crop single cells and center them into images of 96px x 96px. In total, we
extracted up to 500000 single cells from the original dataset.

Using CellProfiler Analyst’s visualization tools, we were able to sort 2526 nuclei into
21 morphological phenotypes (see Figure 5.4 and Appendix) and two artifactual classes
(blurry and lines). A more detailed description of each class can be found in the appendix.

Method Three channels (453 features) DNA only (94 features)
Means 0.83 0.66
Means + FA analysis 0.94 0.68

Table 5.1.: We compares the original MOA accuracies of the two best methods as reported
in Ljosa et al on BBBC021 for three channels (DNA, Actin, Tubulin) and our
results for MOA classification (cosine distance) and only DNA information.
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Figure 5.3.: SUBPOP dataset - 23 hand-labeled subpopulations extracted from BBBC021
image set: (1) anaphase, (2) apoptotic, (3) blurry, (4) debris, (5) early prophase,
(6) elongated, (7) fragmented, (8) halfcircle, (9) holey, (10) indented, (11) inter-
phase, (12) kidney, (13) late prophase/early anaphase, (14) late telophase, (15)
lines, (16) metaphase, (17) micronucleus, (18) monopole, (19) multinucleate,
(20) nucleolirim, (21) prophase, (22) round and (23) telophase

Class

12.4

16

i . 1 I 08

100¢ — 0.0
Count

Figure 5.4.: SUBPOP statistics - Left: SUBPOP dataset is heavily unbalanced. There are
about 20 times more interphase cells (991 cells) than monopole cels (52 cells).
Right: Heatmap of euclidean distances between class means (CP features);
Clusters between classes suggest high visual similarity.
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5.3. Classification using CellProfiler Analyst

Figure 5.3 displays a collection of image tile representing each of the 23 subpopulation
classes. Hand-labeling cells, though tedious and non-exhaustive compared to fully au-
tomated methods, leverages researchers” knowledge. Furthermore, CellProfiler Analyst
can help to semi-automate labeling (and thus speed up the process) using expert-guided
iterative machine learning (see Section 4.3).

For simplicity, we will refer to the hand-labeled subpopulation dataset as SUBPOP dataset.
The dataset is heavily unbalanced because some phenotypes are much rarer than others.
The left part of Figure 5.4 visualizes the counts for each class. As one can see, cells labeled
with interphase have about 20 times more samples than cells labeled with monopole. Vi-
sually, especially for a non-expert, it is very difficult to distinguish certain classes. For
example, Figure 5.3 suggest visual similarities between interphase and micronucleus. Us-
ing the mean of all CP features, extracted from the image tiles using CellProfiler, we can
plot a euclidean distance matrix (see right part of Figure 5.4). This helps us evaluate the
quality of our dataset.

As we can see from Figure 5.4, artifactual classes (lines and blurry) are visually very dis-
tinct from other classes. Unfortunately, the plot also confirms our belief that interphase, the
largest class in our dataset, has a low euclidean distance (thus is visually similar) towards
many other classes (i.e indented and micronucleus).

5.3. Classification using CellProfiler Analyst

Our aim is to train a classifier to distinguish the 23 morphological phenotypes. The trained
classifier is then used to sort all cells in BBBC021 into one of the 23 classes. Thus it is impor-
tant to train a good classifier. In order to evaluate the performance of the classifier, we train
two models, linear discriminant analysis and random forests, as baseline experiment. For
both methods, we use a 5 fold cross-validation on SUBPOP training set. CellProfiler Ana-
lyst provides us with a unified framework to train and evaluate classification algorithms
from scikit-learn without writing a single line of code (see Section 4.3).

5.3.1. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is often used as baseline algorithm. LDA uses a linear
decision boundary, generated by fitting class conditional densities to the data P(X|y = k)
for each class k and using Bayes rule:

PXly=k)Py=Fk) _  PXly=k)P(y=F)

Py =k|X) = P(X) TS P(X|ly=1)-P(y=1)

(5.1)

The model fits a Gaussian density to each class, assuming that all classes share the same
covariance matrix. LDA has proven to work well in practice and is inherently multiclass.
Furthermore, it is fast to evaluate due to its closed-form solution and no need for hyper-
parameters. Figure 5.5 shows the confusion matrices for LDA trained on SUBPOP using
a 5-fold crossvalidation. Using CellProfiler features (94 expert-engineered features), LDA
was able to correctly predict 63% of all cell phenotypes. However, as expected, LDA con-
fuses interphase with micronucleus and intended (see Figure 5.5a). This is due to the
heavily unbalanced dataset. There is much less class data for micronucleus available than
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5. Subpopulation Profiling

for interphase. Thus, over 75% of all micronucleus cells get misclassified as interphase
cells. Next, we used raw pixel data (96 * 96 pixels) as input. LDA is not able to seperate
morphological classes in this feature space and only achieves 14.5% accuracy.

32



5.3. Classification using CellProfiler Analyst

Confusion matrix (Classification Accuracy: 63.05%)
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Figure 5.5.: Confusion matrix for phenotype classification using LDA
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5. Subpopulation Profiling

Number of trees  Accuracy (CP features) Accuracy (pixel only)

10 0.616 0.472
100 0.653 0.545
1000 0.655 0.560

Table 5.2.: This table shows the performance for random forest classification of 23 morpho-
logical classes using CP features and raw pixel input.

5.3.2. Random Forest

Random forests are an ensemble learning method for classification, that construct a multi-
tude of decision trees at training time. The output of a random forest is the majority vote
of the individual trees (the mode of the classes). For our experiments, we used random
forests with 10, 100 and 1000 decision trees.

Table 5.2 shows that, using CP features, random forests perform around the same as
LDA (between 61% and 65%). Furthermore, random forests require the selection of several
hypterparameters, such as number of trees and maximal depth. In our experiments, nodes
are expanded until all leaves are pure. We used weight balancing in scikit-learn which
automatically adjust weights inversely proportional to class frequencies in the input data.
Using raw pixel data, random forests perform much better than LDA, achieving 47% to
56% accuracy. However, as Figure 5.6 shows, the random forest is overall not suited for
phenotype classification due to the fact, that it is not able to predict rare classes (such as
micronucleus). As we will see later, especially phenotypes with few training examples,
thus making them biological rare subpopulations, seem to have the largest influence on
the mechanism of action of a biological sample.
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5.3. Classification using CellProfiler Analyst

Confusion matrix (Classification Accuracy: 65.50%)
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(b) Random Forest using pixel data

Figure 5.6.: Confusion matrix for phenotype classification using a random forest (n =1000)
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Model Accuracy (CP features)
Feed-forward Net (2 layers) 0.582
Feed-forward Net (4 layers) 0.621
Feed-forward Net (8 layers) 0.605

Table 5.3.: Deep learning models, trained over 100 epochs using momentum and a learning
rate of 0.1. Batch normalization is used in all models.

5.4. Deep Learning for Subpopulation classification

In this section, we explore deep learning models for subpopulation classification. All ex-
periments are run using neon 1.6.0 and TensorFlow 0.9 each model is trained using mo-
mentum, batch normalization and weight decay. We start each model with a learning rate
of 0.1 and decay it to 0.01 and 0.001 using a staircase method. Our method is evaluated
using a 5-fold crossvalidation.

Table 5.3 shows the accuracy of deep neural networks using CellProfiler features. In
general, they perform worse than the baselines set by CellProfiler Analyst’s random forest
and LDA. A feed-forward network with four layers achieves the best results (62.1% accu-
racy). The performance is not surprising due to the fact, that deep neural networks need
enough training data to learn a sufficient representation (as described in Chapter 2). Cell-
Profiler features are represented as 94-dimensional vector and thus provides not enough
information for a neural network.

The question arises whether we can learn better features than CellProfiler’s expert-
engineered feature set. Instead of using CellProfiler features, we directly use single cell
image tiles (96 x 96px) as input. This allows us to apply data augmentation (see Section
2.2.2) and provides us with a larger feature space (9216 instead of 94 dimensions).

Table 5.4 shows the results of four different models: VGG-16, ResNet-32, ResNet-56
and ResNet-110. As one can see, a residual network with 32 layers, trained on pixels,
achieves the highest accuracy 72.4%. It achieves a relative improvement of 10% compared
to the best performing traditional classifiers using CP features and a 22% improvement
compared to traditional classifiers using only raw pixels as input. This is a surprising
result due to the fact, that SUBPOP is relatively small (2526 cells and 23 classes) compared

Model Data Augmentation Accuracy (pixel only)
VGG-16 No 0.612
VGG-16 Yes 0.670
ResNet-32 No 0.648
ResNet-32 Yes 0.724
ResNet-56 Yes 0.705
ResNet-110 Yes 0.689

Table 5.4.: Deep learning models, trained over 100 epochs using momentum and a learning
rate of 0.1. Batch normalization is used in all models.
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5.4. Deep Learning for Subpopulation classification

to the usual training sets for deep neural networks (i.e. ImageNet with 1 million images
and 1000 classes). We discovered that data augmentation helps the network to cope with
the small dataset by artificially generating more training examples, yielding a significant
accuracy improvement of 6% for VGG-16 and 8% for ResNet-32.

As we can see in Figure 5.7, a residual networks not only perform well in terms of clas-
sification accuracy, but also are able to detect classes with only few training examples. For
example, the morphological class holey only has around 100 training examples and tradi-
tional methods only achieve low accuracy using CP features (LDA correctly classifies 14%;
random forest misclassified all training examples). A ResNet, however, was able to classify
the class correctly in 61% of all cases. This suggest that traditional CellProfiler features are
not able to sufficiently capture this class, while a neural network was able to learn better
features from pixel data.

Confusion matrix (Classification Accuracy: 70.49%)

anaphase 0.20

apoptotic 016 0.05
blurry 030 0.04 007 0.04
debris 0.05
earlyprophase 012 025
elongated 005 0.05 0.26
fragmented 009 0.04 0.09

halfcircle 010 0.10 .
holey . 0.17 006 0.06 011

indented 025 012 012 [0S0
interphase 002 001 001 . 001 002 002 002 003
o
% kidney 014 029 014 036 007
g
latepro_earlyana . 012 012
latetelophase 007 007 007 0.07 007 007 0.47 007 007
lines
metaphase 0.06 0.06
micrenucleus 0.05 0.05 010 005 024 0.52
monopole . 0.33
multinucleate 010 005 020 005 020 040
nucleolirim 008 015 054 023

prophase 0.04 0.04 013 0.04 .
round . 0.05 030
telophase 015 0.05 0.05 .

F & e N Ny & e @ &
PR S SLe i 5 & o F & - 5 & & & &
é‘.si“‘ &QQ" ¥ a"ééf@ .ﬁ‘é\ &{p A Qbé‘ ;,(5'\ & & é@" & 0“3} @QUQD QJ}L L\‘a# dPQ‘\ \EQ(:D
S o ¥ & &S & &
& LY k “Q@ & & &

Predicted label

Figure 5.7.: Confusion matrix for phenotype classification using a ResNet-56 - In contrast
to LDA and random forest, a ResNet-56 is able to classify rare phenotypes such
as holey
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5.5. Neural Attention for Automatic Cell detection

One disadvantage of our supervised profiling workflow is the need of cropped cell image
tiles in order to train our deep neural network. Therefore, we need to preprocess and
extract the location of single cells in an image. Thus, the question arises, if we can integrate
this preprocessing step into our neural network (and detect single cells from whole image
data alone) without requiring a third-party software (e.g CellProfiler). In this section, we
explore the use of spatial attention models [59] to automatically detect cells with a specific
phenotype. Using a spatial transformer network, we were able to detect and crop single
cells within a 96 x 96 px frame. Furthermore, we open-sourced our implementation as
part of TensorFlow [60] in order to bootstrap further research in this direction. Our model
can be downloaded at https://github.com/tensorflow/models/tree/master/
transformer.

5.5.1. Spatial Transformer Network

A spatial transformer network or STN was first introduced by Jaderberg et al. [59] and
allows the spatial manipulation of data within a deep network. STNs are self-contained
modules which can be dropped into a CNN architecture at any point.

~ Localisation net Grid
) generator

§one

Sampler

v

Spatlal Transformer
Figure 5.8.: Spatial Transformer Network - A spatial transformer network consists of three

components: localisation network, grid generator and sampler. U and V' are
input and output feature maps within a CNN. Reprinted from [59].

It has three main components (see Figure 5.8): A localisation network, grid generator
and sampler. The localisation network takes as input the feature map of a convolutional
layer and learns parameters 6 of a transformation we want to apply. The grid generator G
then generates a grid of coordinates in the input image corresponding to each pixel from
the output image. Equation 5.2 describes a pointwise affine transformation

Lok

(5.2)
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5.5. Neural Attention for Automatic Cell detection

(a) telophase (original) b) holey (original) (c) fragmented (original)
(d) telophase (attention) (e) holey (attention) (f) fragmented (attention)

Figure 5.9.: Neural attention for phenotype detection - we cropped 96 x 96 px tiles from
the image around a phenotype (upper row). A spatial transformer network
was then able to “attend” on the corresponding phenotype in the image (lower
row).

where (¢, y!)T are the target coordinates of the grid and (z,y;)? are the source coordi-
nates in the input feature map and ¢ are the parameters of the affine transformation matrix.
Finally, in order to perform a differential spatial transformation, a sampler generates the
output image using the grid given by the grid generator. For our experiments, we will use
a bilinear sampling kernel.

5.5.2. Experiments and Results

The goal of these experiments is to show that it is possible to detect single cells (or regions
of interest) on-the-fly while training a neural network for phenotype classification. First,
we plugged a STN on top of the first CNN layer of our ResNet-32 (see Section 5.4) for
visualization purpose and trained the network using 96 x 96 px tiles (with multiple cells)
with one class label. Figure 5.9 shows the original input image (with class label) and the
spatial transformed output. As one can see, the STN is capable of identifying the correct
cell for the corresponding classes. For example, it correctly differentiates a holey cell (see
Subfigures 5.9b and 5.9¢e) from three other cells and is able to "focus” on it. This indicates
that the neural network considers the morphology of specific cells within a population as a
strong signal for the class label of an image. One could imagine to extend this experiment
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and "focus’ on regions of interest instead of single cells for the whole image. However, dur-
ing our experiments, we observed that STNs are not able to learn to detect single cells on
larger tile sizes (larger than 150 x 150 px). Furthermore each spatial transformer network
can only attend on one single cell, thus making the simultanous detection of hundreds of
cells intractable. Thus, we conclude that, for small tile sizes, one can train a cell detector
using weakly supervised labels (class label of cell of interest). In practice, however, in or-
der to accurately detect single cells for a large field of view with multiple cells, we still
require third-party software or a model (e.g Faster R-CNN [61]), specifically trained for
this purpose.

5.6. Subpopulation Profiles for MOA classification

This section discusses how we can generate profiles using subpopulation information. Af-
ter training a ResNet-32 on SUBPOP, we use our deep model to predict phenotypes for
each of the 500000 unlabeled cells in BBBC021. The subpopulation information allows us
to represent each treatment as a 23-dimensional profile:

S = (alsl, a289, ... ,a23323)T (53)

each element s; of which contains the number of nuclei classified into the corresponding
phenotype i and a; models the “biological influence” of this phenotype, which we choose
either manually (no additional data required) or infer it using a factor model (additional
labeled data required). In this section, we will choose the parameters based on expert
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Figure 5.10.: Clustering using subpopulation profiles - For each treatment, we extract the
subpopulation profile s by extracting the cell counts of each morphological
class via a trained ResNet-32. Using a distance metric d, we can then cluster
treatment profiles into MOAs. Here, aach row corresponds to an instance
of a treatment experiment. As one can see, subpopulation profiles are low
dimensional (only 23 dim) and interpretable.
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Figure 5.11.: Cell count distribution - Cell count distribution for all morphological classes,
as predicted by ResNet-32 on BBBC021. Due to its large cell count, interphase
diminishes the relative signal of rarer classes (Note: because we start at zero,
interphase is labeled 10 in this example)

knowledge: For example, we hypothesize that our two artifactual phenotypes: blurry (3)
and lines (15) shouldn’t have any influence on which mechanism of action a treatment
belongs to. After computing the subpopulation treatment profile, we can use a distance
metric between the profiles as a measure of similarity to cluster similar profiles together
and predict MOA using 1-nearest-neighbor (as described in Section 3.1). In Figure 5.10, one
can see, that these profiles are highly interpretable. For example, we can visually observe
that treatments which are known to be Aurora Kinase B inhibitors have a high cell count
of monopole (18) phenotypes in their population among all treatments.

Our naive assumption ay, ..., a3 = 1, giving each phenotype the same weight on the
subpopulation profile results in lower accuracy than mean profiles. Our best performing
model achieves 60% accuracy on MOA classification using cityblock distance (see Table
5.5). As seen in Figure 5.11a, more than half of all cells in BBBC021 are classified as in-

Model Metric MOA accuracy
Means Cosine 0.66
Means + FA analysis Cosine 0.68
ResNet-32 Cosine 0.58
ResNet-32 trained without interphase, blurry and lines Cosine 0.75
ResNet-32 with weighting Cosine 0.83
ResNet-32 Euclidean 0.57
ResNet-32 trained without interphase, blurry and lines Euclidean 0.69
ResNet-32 with weighting Euclidean 0.78
ResNet-32 Cityblock 0.60
ResNet-32 trained without interphase, blurry and lines  Cityblock 0.70
ResNet-32 with weighting Cityblock 0.77

Table 5.5.: Comparison of MOA classification results for ResNet-32 and mean profiles
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terphase (11). Although this might resemble the true distribution, it diminishes the signal
of rare phenotypes (such as holey or micronucleus). Thus, we speculate that it might be
these rare phenotypes which have the most biological influence (hence determining which
mechanism of action a compound belongs to).

To test this hypothesis, we set the weights of interphase and the artefactual classes (lines
and blurry) to zero (a3 = 0,a11 = 0,a15 = 0). Subpopulation profiles with these new
weights (which we call weightings) turn out to outperform both, means and means + fac-
tor analysis, by a large margin. Our best model, a ResNet-32 model with weightings using
cosine distance outperforms population averaging and factor analysis by 15% (relative im-
provement of 18%). Using weight adjustment, other metrics yield similar improvements,
all outperforming population averaging: A deep model using euclidean distance achieves
78% while a deep network using cityblock distance results in 77% accuracy. We assume
that cosine distance is best suited for subpopulation profiling, because it is invariant to
scaling, thus making it more robust towards fluctuations in cell counts. The question arises
if, instead of setting weights a3, a;; and a5 to zero, we could just train our deep neural
network without interphase, blurry and lines. Thus, we removed all cells belonging to in-
terphase, blurry and lines from our training set. One can see in Figure 5.5 that ResNets-32
trained without interphase, blurry and lines perform better than ResNet-32 subpopulation
profiles, trained on the full data set without weightings. However, it performs worse than
with weightings. We believe that this is due to missing training data, resulting in worse
classification accuracy on rare phenotypes. Without interphase training cells, ResNet-32s
phenotype classification accuracy dropped from 72.4 % (see Figure 5.4) to 69.0 %.
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In this chapter, we will summarize our findings, discuss its potential impact and explore
future research directions.

6.1. Summary

Subpopulations are a fundamental property of cellular systems and thus, recent compu-
tational development for image-based profiling aim to preserve single-cell data and take
into account the heterogeneity of cultured cell populations. The goal of this thesis was
to explore how the use of supervised deep learning models enables us to capture cellular
heterogeneity in profiles.

To accomplish this goal, we had to overcome several challenges:

1. Can we design a system to leverage experts’ knowledge and curate a small subpop-
ulation training set?

2. What are good features to train a model to classify phenotypes?

3. Does subpopulation profiles yield additional information to outperform state-of-the-
art population averaging?

To resolve the first question, we developed CellProfiler Analyst 2.0, a user-friendly tool
for expert-guided machine learning in bioimaging, that allowed us to analyze and sort
more than 2500 cells into 23 morphological classes, creating classification baselines on the
fly. CellProfiler Analyst is designed for biologists with no coding experience and allows
to extract cells into image tiles. Additional features for biologists further allow them to
quickly analyze post-process their image collections. CellProfiler Analyst 2.0 has been
published in [7] and is routinely used by numerous researchers around the world.

After extracting the subpopulation training set, we then showed that CellProfiler (CP)
features were not able to capture enough information about rare phenotypes. Traditional
machine learning models, such as LDA and random forests, were not able to classify rare
morphological classes when trained with CP features. Instead of using expert-engineered
features, we thus propose to directly learn features from a deep neural network trained
on raw image pixels. Surprisingly, although we were working with a relatively small
and custom dataset, a very deep residual network with 32 layers (ResNet-32) was able
to achieve the highest classification accuracy among all tested models. We believe that
there are two reasons for this: First, because we are working with raw pixels instead of
expert-engineered features, data augmentation methods allowed us to artificially increase
our dataset by flipping and translating the image without changing the class (which is
not possible in CP feature space). Second, it has been shown in a recent study [62] that
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residual networks act as an ensemble of smaller networks, allowing it to be trained with
less data than a single large network. Our results showed that current deep learning tech-
niques can come up with better features for single cell image tiles without requiring any
segmentation and user-input from a third-party software. Further, it has been found that
deep neural networks are applicable on relatively small single-cell datasets. These promis-
ing findings have a wide-ranging impact across drug discovery and basic science as they
pave the way towards better and fully automated bioimage analysis software for high-
throughput experiments.

Finally, the fundamental question we wanted to answer is whether subpopulation pro-
files, thus explicitly modeling cellular heterogeneity, are in general better than averaging
profiles. Or simply put: do subpopulations matter for image-based profiling? We were
able to show that subpopulation-based analysis can improve the accuracy of signature
identification in a previously published dataset. However, it seems that the examined
ground-truth dataset is too small and thus the proposed classification accuracy might not
be a reliable metric for comparing profiling methods. Therefore, further research is needed
and profiling methods in general have to be validated across a wider range of profiling ex-
periments.

The success of subpopulation profiles for image-based profiling will depend on how
useful it is for biologists and how robust the method is in the presence of artefactual and
biological noise. Hence, finding a useful similarity measurement among subpopulation
profiles is an open research question. However, our proposed method has several promis-
ing advantages:

¢ Though tedious and non-exhaustive compared to fully automated methods, our method
leverages biologists” knowledge and thus is able to extract and identify subtle phe-
notypes.

* In contrast to unsupervised or weakly-supervised learning methods, our models,
given similar experimental settings, don’t need to be retrained for new datasets. This
makes its use computationally efficient and scalable.

¢ Subpopulation profiles are interpretable and, in contrast to population averages of
CP features, have low dimensionality. Both properties are valuable for basic research
and help to not only discover but also explain biological findings.

6.2. Future work

The field of deep learning for biological subpopulation profiling offers multiple possible
directions for future work and can be broadly categorized into two themes: Integration
of deep learning models into existing image processing software and the development of
fully unsupervised subpopulation methods.

CellProfiler Analyst currently supports only traditional machine learning algorithms. In
order to democratize deep neural networks for image-based profiling, we plan to integrate
popular deep learning libraries such as TensorFlow and Torch into CellProfiler Analyst.

A bottleneck in supervised workflows to the need to train on labeled datasets. Further-
more, as mentioned above, the small available ground-truth data complicates the valida-
tion of novel profiling methods. Although we introduced software to ease the labeling of
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these datasets, another approach would be to develop automated clustering technique to
extract subpopulations with subtle phenotypes. Furthermore, it was attempted to explore
the use of attention models, such as spatial transformer networks [59], for unsupervised
single-cell phenotype detection during this thesis. Detection of multiple cells on a larger
frame can be accomplished using recurrent spatial transformer architectures [63] but time
constraints precluded further research.

Moreover, an interesting approach would be to train a neural network end-to-end di-
rectly from image to mechanism-of-action, without requiring the use of any subpopula-
tions. However due to relatively small ground-truth datasets available for MOA classifi-
cation, training a model would possibly fail. One could try to circumvent this by training
neural models on image labels, such as treatment information, instead of MOA labels.
However, we think a disadvantage, by taking the human out of the loop, is that we miss
out a chance on interpretable profiles and leveraging expert-guided knowledge.

Nevertheless, deep learning presents a promising approach to image-based chemical-
genetic profiling. Being able to model cellular heterogeneity and preserving single-cell
information will not only have a wide-ranging impact on the performance of image-based
profiling but will also expand our understanding of biological phenomena.
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A. Detailed results

A.1. Subpopulation class descriptions

Phenotype Description
anaphase chromatin in relatively straight line, edges of chromatin are irregular,
p amount of DNA is clearly 2N
. small bright cells that look unhealthy but amount of DNA is roughly
apoptotic IN
blurry nuclei of any shape or phenotype that are quite blurry
debris small bits of DNA where the amount of DNA looks less than 2N
earlyprophase still has an interphase shape overall, but the chromatin is crinklier
elongated relatively normal-looking interphase nuclei that are elongated
fragmented multiple small or medium-sized DNA regions that are typically blebby
halfcircle rglatlvely normal-looking interphase nuclei that are shaped like a half
circle
relatively normal-looking interphase nuclei where dark holes are
holey - .
clearly visible for the nucleoli
indented relatively normal-looking interphase nuclei but with one or two inden-
tations but without much DNA staining around the holes
interphase normal-looking interphase nuclei of any size (except tiny; see late
P telophase) that do not have another phenotype listed
kidney relatively normal-looking interphase nuclei that are kidney-shaped

latepro-earlyana

either just before or just after metaphase; like prophase but segmenta-
tion is off-center

a bit less of a straight line versus telophase; essentially tiny interphase

latetelophase cells

lines artifactual horizontal lines

metaphase chromatin in straight line, amount of DNA is clearly 4N

micronucleus relatively normal-looking interphase nuclei with one or two tiny mi-

cronuclei just outside the nucleus
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like prophase but with a clear divot in the middle, segmentation is cen-

monopole tered

multinucleate two or three otherwise relatively normal-looking interphase nuclei

relatively normal-looking interphase nuclei where dark holes are rel-
nucleolirim atively visible for the nucleoli and there is noticeable DNA staining
around the holes

prophase roundish with more tube-like chromatin, segmentation is centered

round relatively normal-looking interphase nuclei that are round

chromatin in relatively straight line, edges of chromatin are smooth,

telophase amount of DNA is clearly 2N

Table A.1.: Phenotype descriptions of all 23 SUBPOP classes

50



A.2. ResNet-32 detailed results for MOA classification and TensorFlow implementation
graphs

A.2. ResNet-32 detailed results for MOA classification and
TensorFlow implementation graphs

True mechanistic class Predicted class Acc.

Actin disruptors - - - - - - - -1 - - 4 0 %
Aurora kinase inhibitors -1 - - 2 - - - - - - - 83 %
Cholesterol-lowering - - 4 - - - - - - - 2 - 67 %
DNA damage - - - 9 - - - - - - - - 100 %
DNA replication - - - - 86 - - - - - 2 - 75 %
Eg5 inhibitors - - - - -6 - - 5 -1 - 50 %
Epithelial - -1 - - - 4 - - - 2 1 50 %
Kinase inhibitors - - - - - - 2 3 - - 40 %
Microtubule destabilizers - - - - - - - 111 2 - - 79 %
Microtubule stabilizers - - - - - - - - 3 6 - - 67 %
Protein degradation - -1 -3 - 1 - - - 11 14 %
Protein synthesis i - - - - -3 - - - 1 3 38 %

Overall accuracy: 62 / 103 = 60 %

(a) Cityblock distance

True mechanistic class Predicted class Acc.
Actin disruptors 3 - - - -1 - - - - -1 60 %
Aurora kinase inhibitors -9 - - 2 - - - - - -1 75 %
Cholesterol-lowering - - 86 - - - - - - - - - 100 %
DNA damage - - - 6 3 - - - - - - - 67 %
DNA replication - - - 3 3 - - 2 - - - - 38 %
Eg5 inhibitors - - - - - 6 - - 5 - 1 - 50 %
Epithelial - -1 - - - 4 1 - - 2 - 50 %
Kinase inhibitors - - - - - - - 3 2 - - - 60 %
Microtubule destabilizers - - - - - 2 -1 8 3 - - 57 %
Microtubule stabilizers -1 - - - - - - 2 6 - - 67 %
Protein degradation - - - -1 - 1 1 1 - - 43 %
Protein synthesis 3 - - - - - 2 - - - - 3 38%

Overall accuracy: 60 / 103 = 58 %

(b) Cosine distance

True mechanistic class Predicted class Acc.
Actin disruptors 11 - - - 1 - - - - - 2 20%
Aurora kinase inhibitors -9 - - 1 i - - - - 1 75 %
Cholesterol-lowering - 4 1 - - - - - 1 - 67 %
DNA damage - - - 9 - - - - - - - - 100 %
DNA replication - -1 - 6 - - - - 1 - 75 %
Eg5 inhibitors - - - - - 6 - - 86 - - - 50 %
Epithelial - -1 - -3 - - - 2 1 38 %
Kinase inhibitors - - - - - - 3 2 - - - 60 %
Microtubule destabilizers - - - - - 2 - 1 9 2 - - 64 %
Microtubule stabilizers - - - - - - - - 3 6 - - 67 %
Protein degradation - - 3 - 2 - 2 - - - - - 0%
Protein synthesis i - 1 - - - 3 - - - 3 38%

Overall accuracy: 59 / 103 = 57 %

(c) Euclidean distance

Figure A.1.: Confusion matrix for MOA classification using ResNet-32
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True mechanistic class Predicted class Acc.
Actin disruptors i1 - - - 1 - - - - - 2 20 %
Aurora kinase inhibitors -1 - - - - - - - 1 - - 92 %
Cholesterol-lowering - -5 - - - 1 - - - - - 83 %
DNA damage - - - 8 - - - 1 - - - - 89 %
DNA replication - - - - 4 - - - - -4 - 50 %
Eg5 inhibitors i - - - -1 - - 1 - - - 83 %
Epithelial 2 - 1 - - - 4 - - = =1 50 %
Kinase inhibitors - - - 2 - - 3 - - - - 60 %
Microtubule destabilizers - - - - - - - 110 3 - - 71 %
Microtubule stabilizers - = = - -« -« -« - 3 6 - - 67 %
Protein degradation - -1 - 4 - - - - - 2 - 29 %
Protein synthesis - - - - - - - - - - - B 100 %
Overall accuracy: 72 / 103 = 70 %
(a) Cityblock distance
True mechanistic class Predicted class Acc.
Actin disruptors i1 - - - - - -1 - - 2 20 %
Aurora kinase inhibitors -12 - - - - - - - - - - 100 %
Cholesterol-lowering S S e 67 %
DNA damage - - - 9 - - - - - - - - 100 %
DNA replication - - - - 6 - - - - - 2 - 75 %
Eg5 inhibitors - - - - - 8 - - 4 - - - 67 %
Epithelial ~ = 1 =~ - - B - - = 2 62 %
Kinase inhibitors - - -1 - - - 4 - - - - 80 %
Microtubule destabilizers - - = - - -« - 111 2 - - 79 %
Microtubule stabilizers - - - - - - - - 3 6 - - 67 %
Protein degradation - -1 - 3 - - - - - 3 - 43 %
Protein synthesis - - - - - - - - - - - B 100 %
Overall accuracy: 77 / 103 = 75 %
(b) Cosine distance
True mechanistic class Predicted class Acc.
Actin disruptors 2 - - - - 1 - - - - - 2 40 %
Aurora kinase inhibitors - 12 - - - - - - - - - - 100 %
Cholesterol-lowering - - 5 - - - 1 - - - - - 83 %
DNA damage - - - 4 4 - - 1 - - - - 44 %
DNA replication - - - 7 - - - 1 - - - - 0 %
Eg5 inhibitors - - - - =12 - - - - - - 100 %
Epithelial - -1 - - - 7T - - - - - 88 %
Kinase inhibitors - - - -2 - - - - - - 60 %
Microtubule destabilizers - - - -1 - - -10 3 - - 71 %
Microtubule stabilizers - = = = -« -« -« - 4 5 - - 56 %
Protein degradation - -1 -1 - - 1 - - 3 1 43 %
Protein synthesis - = = = - - - - - - - 8B 100 %

Overall accuracy: 71 / 103 = 69 %

(c) Euclidean distance

Figure A.2.: Confusion matrix for MOA classification using ResNet-32 trained without in-
terphase, blurry and lines cells
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A.2. ResNet-32 detailed results for MOA classification and TensorFlow implementation

graphs

True mechanistic class Predicted class

Actin disruptors T
Aurora kinase inhibitors -11 - - 1 - - - - -
Cholesterol-lowering - = B - = = = - - -
DNA damage - - -9 - - - - - -
DNA replication - - - - B - - - - -
Eg5 inhibitors - - - - - 7 - - 5 .
Epithelial - - 1 - - - 5 - -
Kinase inhibitors - = = = - - - 8§ -
Microtubule destabilizers - - -1 - - - -11
Microtubule stabilizers - - - - - - - - 3
Protein degradation - -1 - 2 - - - -
Protein synthesis - - - - - . .-

Overall accuracy: 79

(a) Cityblock distance

True mechanistic class Predicted class

Actin disruptors 4 - - - - - - .-
Aurora kinase inhibitors =12 - - 4 - 4 4 - .
Cholesterol-lowering - - B
DNA damage - - -
DNA replication - - -
Eg5 inhibitors - - - -
Epithelial B A |
Kinase inhibitors - - -1 - - - 4
Microtubule destabilizers - - - - - - - 110
Microtubule stabilizers = 1 = = = = = =
Protein degradation T |
Protein synthesis - - - - .- .-

Overall accuracy: 85

(b) Cosine distance
True mechanistic class Predicted class

Actin disruptors 3 - -« = = - « < 1 =
Aurora kinase inhibitors -1 - - 1 - - - - -
Cholesterol-lowering e - T
DNA damage - - -9 - - - - - -
DNA replication - - - - B - - - - -
Eg5 inhibitors - - - - - 8 - - 3 -
Epithelial 2 -1 - - - 3 - - -
Kinase inhibitors - - - - - - - 5 -
Microtubule destabilizers - - -1 - 1 - - 98
Microtubule stabilizers - - - - - - - -1
Protein degradation - - 2 - 2 - - - -
Protein synthesis - - - ... oo .

Overall accuracy: 80

(c) Euclidean distance

- 3
2 -
- 2
4 -
- 8
/ 183
1 -
1 -
5 1
- 8
/ 103
- 1
2 -
- 2
3 -
- 8
/ 103

Figure A.3.: Confusion matrix for MOA classification using ResNet-32 and a class weight

adjusted metric (weighting)
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Figure A .4.: ResNet-32 implementation graph in TensorBoard
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graphs

A.2. ResNet-32 detailed results for MOA classification and TensorFlow implementation
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A. Detailed results

A.3. Subpopulation cells and profiles

Aurora kinase inhibitors |-

Cholesterol-lowering

anaphase
apoptotic
blurry
debris
earlyprophase
elongated
fragmented
halfcircle
holey
indented
interphase
kidney

latetelophase
lines
metaphase
micronucleus
monopole
multinucleate
nucleolirim
prophase
round
telophase

Handtrained subpopulations

latepro_earlyana

halfecle  imephase  metaphase  eariyprogha  debris (53 nucesirim ki drey (161 telophase
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~
i
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Figure A.6.: CPA Classifier window while curating SUBPOP
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Figure A.7.: Visualization of all subpopulation treatment profiles
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